Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.
The method was developed in the late 1940s at the University of Chicago by Willard Libby. It is based on the fact that radiocarbon () is constantly being created in the Earth's atmosphere by the interaction of with atmospheric nitrogen. The resulting combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis; animals then acquire by eating the plants. When the animal or plant dies, it stops exchanging carbon with its environment, and thereafter the amount of it contains begins to decrease as the undergoes radioactive decay. Measuring the amount of in a sample from a dead plant or animal, such as a piece of wood or a fragment of bone, provides information that can be used to calculate when the animal or plant died. The older a sample is, the less there is to be detected. The half-life of (the period of time after which half of a given sample will have decayed) is about 5,730 years, so the oldest dates that can be reliably measured by this process date to approximately 50,000 years ago, although special preparation methods occasionally make an accurate analysis of older samples possible. Libby received the Nobel Prize in Chemistry for his work in 1960.
Research has been ongoing since the 1960s to determine what the proportion of in the atmosphere has been over the past fifty thousand years. The resulting data, in the form of a calibration curve, is now used to convert a given measurement of radiocarbon in a sample into an estimate of the sample's calendar age. Other corrections must be made to account for the proportion of in different types of organisms (fractionation), and the varying levels of throughout the biosphere (reservoir effects). Additional complications come from the burning of fossil fuels such as coal and oil, and from the above-ground nuclear tests done in the 1950s and 1960s. Because the time it takes to convert biological materials to fossil fuels is substantially longer than the time it takes for its to decay below detectable levels, fossil fuels contain almost no . As a result, beginning in the late 19th century, there was a noticeable drop in the proportion of as the carbon dioxide generated from burning fossil fuels began to accumulate in the atmosphere. Conversely, nuclear testing increased the amount of in the atmosphere, which reached a maximum in about 1965 of almost double the amount present in the atmosphere prior to nuclear testing.
Measurement of radiocarbon was originally done by beta-counting devices, which counted the amount of beta radiation emitted by decaying atoms in a sample. More recently, accelerator mass spectrometry has become the method of choice; it counts all the atoms in the sample and not just the few that happen to decay during the measurements; it can therefore be used with much smaller samples (as small as individual plant seeds), and gives results much more quickly. The development of radiocarbon dating has had a profound impact on archaeology. In addition to permitting more accurate dating within archaeological sites than previous methods, it allows comparison of dates of events across great distances. Histories of archaeology often refer to its impact as the "radiocarbon revolution". Radiocarbon dating has allowed key transitions in prehistory to be dated, such as the end of the Younger Dryas, and the beginning of the Neolithic and Bronze Age in different regions.
Libby and James Arnold proceeded to test the radiocarbon dating theory by analyzing samples with known ages. For example, two samples taken from the tombs of two Egyptian kings, Zoser and Sneferu, independently dated to 2625 BC ± 75 years, were dated by radiocarbon measurement to an average of 2800 BC ± 250 years. These results were published in Science in December 1949.Aitken (1990), pp. 60–61. Within 11 years of their announcement, more than 20 radiocarbon dating laboratories had been set up worldwide. In 1960, Libby was awarded the Nobel Prize in Chemistry for this work.
Once produced, the quickly combines with the oxygen (O) in the atmosphere to form first carbon monoxide (), and ultimately carbon dioxide ().
The equation for the radioactive decay of is:
The equation governing the decay of a radioactive isotope is:
The half-life of a radioactive isotope (usually denoted by t1/2) is a more familiar concept than the mean-life, so although the equations above are expressed in terms of the mean-life, it is more usual to quote the value of 's half-life than its mean-life. The currently accepted value for the half-life of is 5,700 ± 30 years. This means that after 5,700 years, only half of the initial will remain; a quarter will remain after 11,400 years; an eighth after 17,100 years; and so on.
The above calculations make several assumptions, such as that the level of in the atmosphere has remained constant over time. In fact, the level of in the atmosphere has varied significantly and as a result, the values provided by the equation above have to be corrected by using data from other sources.Aitken (1990), pp. 61–66. This is done by calibration curves (discussed below), which convert a measurement of in a sample into an estimated calendar age. The calculations involve several steps and include an intermediate value called the "radiocarbon age", which is the age in "radiocarbon years" of the sample: an age quoted in radiocarbon years means that no calibration curve has been used − the calculations for radiocarbon years assume that the atmospheric / ratio has not changed over time.
Calculating radiocarbon ages also requires the value of the half-life for . In Libby's 1949 paper he used a value of 5720 ± 47 years, based on research by Engelkemeir et al. This was remarkably close to the modern value, but shortly afterwards the accepted value was revised to 5568 ± 30 years, and this value was in use for more than a decade. It was revised again in the early 1960s to 5,730 ± 40 years, which meant that many calculated dates in papers published prior to this were incorrect (the error in the half-life is about 3%). For consistency with these early papers, it was agreed at the 1962 Radiocarbon Conference in Cambridge (UK) to use the "Libby half-life" of 5568 years. Radiocarbon ages are still calculated using this half-life, and are known as "Conventional Radiocarbon Age". Since the calibration curve (IntCal) also reports past atmospheric concentration using this conventional age, any conventional ages calibrated against the IntCal curve will produce a correct calibrated age. When a date is quoted, the reader should be aware that if it is an uncalibrated date (a term used for dates given in radiocarbon years) it may differ substantially from the best estimate of the actual calendar date, both because it uses the wrong value for the half-life of , and because no correction (calibration) has been applied for the historical variation of in the atmosphere over time.Aitken (1990), pp. 92–95.Bowman (1995), p. 42.
Creatures living at the ocean surface have the same ratios as the water they live in, and as a result of the reduced / ratio, the radiocarbon age of marine life is typically about 400 years.Bowman (1995), pp. 24–27.Cronin (2010), p. 35. Organisms on land are in closer equilibrium with the atmosphere and have the same / ratio as the atmosphere. These organisms contain about 1.3% of the carbon in the reservoir; sea organisms have a mass of less than 1% of those on land and are not shown in the diagram. Accumulated dead organic matter, of both plants and animals, exceeds the mass of the biosphere by a factor of nearly 3, and since this matter is no longer exchanging carbon with its environment, it has a / ratio lower than that of the biosphere.
Coal and oil began to be burned in large quantities during the 19th century. Both are sufficiently old that they contain little or no detectable and, as a result, the released substantially diluted the atmospheric / ratio. Dating an object from the early 20th century hence gives an apparent date older than the true date. For the same reason, concentrations in the neighbourhood of large cities are lower than the atmospheric average. This fossil fuel effect (also known as the Suess effect, after Hans Suess, who first reported it in 1955) would only amount to a reduction of 0.2% in activity if the additional carbon from fossil fuels were distributed throughout the carbon exchange reservoir, but because of the long delay in mixing with the deep ocean, the actual effect is a 3% reduction.Aitken (1990), pp. 71–72.
A much larger effect comes from above-ground nuclear testing, which released large numbers of neutrons into the atmosphere, resulting in the creation of . From about 1950 until 1963, when atmospheric nuclear testing was banned, it is estimated that several tonnes of were created. If all this extra had immediately been spread across the entire carbon exchange reservoir, it would have led to an increase in the / ratio of only a few per cent, but the immediate effect was to almost double the amount of in the atmosphere, with the peak level occurring in 1964 for the northern hemisphere, and in 1966 for the southern hemisphere. The level has since dropped, as this bomb pulse or "bomb carbon" (as it is sometimes called) percolates into the rest of the reservoir.
To determine the degree of fractionation that takes place in a given plant, the amounts of both and isotopes are measured, and the resulting / ratio is then compared to a standard ratio known as PDB. The / ratio is used instead of / because the former is much easier to measure, and the latter can be easily derived: the depletion of relative to is proportional to the difference in the atomic masses of the two isotopes, so the depletion for is twice the depletion of . The fractionation of , known as , is calculated as follows:
where the ‰ sign indicates parts per thousand. Because the PDB standard contains an unusually high proportion of , most measured values are negative.
Since makes up about 1% of the carbon in a sample, the / ratio can be accurately measured by mass spectrometry. Typical values of have been found by experiment for many plants, as well as for different parts of animals such as bone collagen, but when dating a given sample it is better to determine the value for that sample directly than to rely on the published values.
The carbon exchange between atmospheric and carbonate at the ocean surface is also subject to fractionation, with in the atmosphere more likely than to dissolve in the ocean. The result is an overall increase in the / ratio in the ocean of 1.5%, relative to the / ratio in the atmosphere. This increase in concentration almost exactly cancels out the decrease caused by the upwelling of water (containing old, and hence -depleted, carbon) from the deep ocean, so that direct measurements of radiation are similar to measurements for the rest of the biosphere. Correcting for isotopic fractionation, as is done for all radiocarbon dates to allow comparison between results from different parts of the biosphere, gives an apparent age of about 400 years for ocean surface water.
Volcanic eruptions eject large amounts of carbon into the air. The carbon is of geological origin and has no detectable , so the / ratio near the volcano is depressed relative to surrounding areas. Dormant volcanoes can also emit aged carbon. Plants that photosynthesize this carbon also have lower / ratios: for example, plants in the neighbourhood of the Furnas caldera in the Azores were found to have apparent ages that ranged from 250 years to 3320 years.
Once contamination has been removed, samples must be converted to a form suitable for the measuring technology to be used.Bowman (1995), pp. 31–37. Where gas is required, is widely used.Aitken (1990), pp. 76–78. For samples to be used in liquid scintillation counters, the carbon must be in liquid form; the sample is typically converted to benzene. For accelerator mass spectrometry, solid graphite targets are the most common, although gaseous can also be used.Trumbore (1996), p. 318.
The quantity of material needed for testing depends on the sample type and the technology being used. There are two types of testing technology: detectors that record radioactivity, known as beta counters, and accelerator mass spectrometers. For beta counters, a sample weighing at least is typically required. Accelerator mass spectrometry is much more sensitive, and samples containing as little as 0.5 milligrams of carbon can be used.Taylor & Bar-Yosef (2014), pp. 103–104.
Libby's method was soon superseded by gas proportional counters, which were less affected by bomb carbon (the additional created by nuclear weapons testing). These counters record bursts of ionization caused by the beta particles emitted by the decaying atoms; the bursts are proportional to the energy of the particle, so other sources of ionization, such as background radiation, can be identified and ignored. The counters are surrounded by lead or steel shielding, to eliminate background radiation and to reduce the incidence of cosmic rays. In addition, anticoincidence detectors are used; these record events outside the counter and any event recorded simultaneously both inside and outside the counter is regarded as an extraneous event and ignored.
The other common technology used for measuring activity is liquid scintillation counting, which was invented in 1950, but which had to wait until the early 1960s, when efficient methods of benzene synthesis were developed, to become competitive with gas counting; after 1970 liquid counters became the more common technology choice for newly constructed dating laboratories. The counters work by detecting flashes of light caused by the beta particles emitted by as they interact with a fluorescing agent added to the benzene. Like gas counters, liquid scintillation counters require shielding and anticoincidence counters.Theodórsson (1996), p. 24.L'Annunziata & Kessler (2012), p. 424.
For both the gas proportional counter and liquid scintillation counter, what is measured is the number of beta particles detected in a given time period. Since the mass of the sample is known, this can be converted to a standard measure of activity in units of either counts per minute per gram of carbon (cpm/g C), or per kg (Bq/kg C, in SI units). Each measuring device is also used to measure the activity of a blank sample – a sample prepared from carbon old enough to have no activity. This provides a value for the background radiation, which must be subtracted from the measured activity of the sample being dated to get the activity attributable solely to that sample's . In addition, a sample with a standard activity is measured, to provide a baseline for comparison.Eriksson Stenström et al. (2011), p. 3.
To determine the age of a sample whose activity has been measured by beta counting, the ratio of its activity to the activity of the standard must be found. To determine this, a blank sample (of old, or dead, carbon) is measured, and a sample of known activity is measured. The additional samples allow errors such as background radiation and systematic errors in the laboratory setup to be detected and corrected for. The most common standard sample material is oxalic acid, such as the HOxII standard, 1,000 lb of which was prepared by the National Institute of Standards and Technology (NIST) in 1977 from French beet harvests.Terasmae (1984), p. 5.L'Annunziata (2007), p. 528.
The results from AMS testing are in the form of ratios of , , and , which are used to calculate Fm, the "fraction modern". This is defined as the ratio between the / ratio in the sample and the / ratio in modern carbon, which is in turn defined as the / ratio that would have been measured in 1950 had there been no fossil fuel effect.
Both beta counting and AMS results have to be corrected for fractionation. This is necessary because different materials of the same age, which because of fractionation have naturally different / ratios, will appear to be of different ages because the / ratio is taken as the indicator of age. To avoid this, all radiocarbon measurements are converted to the measurement that would have been seen had the sample been made of wood, which has a known δ value of −25‰.
Once the corrected / ratio is known, a "radiocarbon age" is calculated using:
The calculation uses 8,033 years, the mean-life derived from Libby's half-life of 5,568 years, not 8,267 years, the mean-life derived from the more accurate modern value of 5,730 years. Libby's value for the half-life is used to maintain consistency with early radiocarbon testing results; calibration curves include a correction for this, so the accuracy of final reported calendar ages is not affected.
Radiocarbon dating is generally limited to dating samples no more than 50,000 years old, as samples older than that have insufficient to be measurable. Older dates have been obtained by using special sample preparation techniques, large samples, and very long measurement times. These techniques can allow measurement of dates up to 60,000 and in some cases up to 75,000 years before the present.
Radiocarbon dates are generally presented with a range of one standard deviation (usually represented by the Greek letter sigma as 1σ) on either side of the mean. However, a date range of 1σ represents only a 68% confidence level, so the true age of the object being measured may lie outside the range of dates quoted. This was demonstrated in 1970 by an experiment run by the British Museum radiocarbon laboratory, in which weekly measurements were taken on the same sample for six months. The results varied widely (though consistently with a normal distribution of errors in the measurements), and included multiple date ranges (of 1σ confidence) that did not overlap with each other. The measurements included one with a range from about 4,250 to about 4,390 years ago, and another with a range from about 4,520 to about 4,690.Taylor (1987), pp. 125–126.
Errors in procedure can also lead to errors in the results. If 1% of the benzene in a modern reference sample accidentally evaporates, scintillation counting will give a radiocarbon age that is too young by about 80 years.Bowman (1995), pp. 40–41.
To produce a curve that can be used to relate calendar years to radiocarbon years, a sequence of securely dated samples is needed which can be tested to determine their radiocarbon age. The study of tree rings led to the first such sequence: individual pieces of wood show characteristic sequences of rings that vary in thickness because of environmental factors such as the amount of rainfall in a given year. These factors affect all trees in an area, so examining tree-ring sequences from old wood allows the identification of overlapping sequences. In this way, an uninterrupted sequence of tree rings can be extended far into the past. The first such published sequence, based on bristlecone pine tree rings, was created by Wesley Ferguson. Hans Suess used this data to publish the first calibration curve for radiocarbon dating in 1967. The curve showed two types of variation from the straight line: a long term fluctuation with a period of about 9,000 years, and a shorter-term variation, often referred to as "wiggles", with a period of decades. Suess said he drew the line showing the wiggles by "cosmic schwung", by which he meant that the variations were caused by extraterrestrial forces. It was unclear for some time whether the wiggles were real or not, but they are now well-established.Taylor & Bar-Yosef (2014), p. 59. These short term fluctuations in the calibration curve are now known as de Vries effects, after Hessel de Vries.Taylor & Bar-Yosef (2014), pp. 53–54.
A calibration curve is used by taking the radiocarbon date reported by a laboratory and reading across from that date on the vertical axis of the graph. The point where this horizontal line intersects the curve will give the calendar age of the sample on the horizontal axis. This is the reverse of the way the curve is constructed: a point on the graph is derived from a sample of known age, such as a tree ring; when it is tested, the resulting radiocarbon age gives a data point for the graph.
Over the next thirty years many calibration curves were published using a variety of methods and statistical approaches. These were superseded by the IntCal series of curves, beginning with IntCal98, published in 1998, and updated in 2004, 2009, 2013, and 2020. The improvements to these curves are based on new data gathered from tree rings, , coral, plant , , and foraminifera. There are separate curves for the northern hemisphere (IntCal20) and southern hemisphere (SHCal20), as they differ systematically because of the hemisphere effect. The continuous sequence of tree-ring dates for the northern hemisphere goes back to 13,910 BP as of 2020, and this provides close to annual dating for IntCal20 much of the period, reduced where there are calibration plateaus, and increased when short term C spikes due to provide additional correlation. Radiocarbon dating earlier than the continuous tree ring sequence relies on correlation with more approximate records. SHCal20 is based on independent data where possible and derived from the northern curve by adding the average offset for the southern hemisphere where no direct data was available. There is also a separate marine calibration curve, MARINE20. For a set of samples forming a sequence with a known separation in time, these samples form a subset of the calibration curve. The sequence can be compared to the calibration curve and the best match to the sequence established. This "wiggle-matching" technique can lead to more precise dating than is possible with individual radiocarbon dates.Walker (2005), pp. 35–37. Wiggle-matching can be used in places where there is a plateau on the calibration curve, and hence can provide a much more accurate date than the intercept or probability methods are able to produce.Aitken (1990), pp. 103–105. The technique is not restricted to tree rings; for example, a stratified tephra sequence in New Zealand, believed to predate human colonization of the islands, has been dated to 1314 AD ± 12 years by wiggle-matching.Walker (2005), pp. 207–209. The wiggles also mean that reading a date from a calibration curve can give more than one answer: this occurs when the curve wiggles up and down enough that the radiocarbon age intercepts the curve in more than one place, which may lead to a radiocarbon result being reported as two separate age ranges, corresponding to the two parts of the curve that the radiocarbon age intercepted.
Bayesian statistical techniques can be applied when there are several radiocarbon dates to be calibrated. For example, if a series of radiocarbon dates is taken from different levels in a stratigraphic sequence, Bayesian analysis can be used to evaluate dates which are outliers and can calculate improved probability distributions, based on the prior information that the sequence should be ordered in time. When Bayesian analysis was introduced, its use was limited by the need to use mainframe computers to perform the calculations, but the technique has since been implemented on programs available for personal computers, such as OxCal.Taylor & Bar-Yosef (2014), pp. 148–149.
Uncalibrated dates should be reported as ": ± BP", where:
For example, the uncalibrated date "UtC-2020: 3510 ± 60 BP" indicates that the sample was tested by the Utrecht van der Graaff Laboratorium ("UtC"), where it has a sample number of "2020", and that the uncalibrated age is 3510 years before present, ± 60 years. Related forms are sometimes used: for example, "2.3 ka BP" means 2,300 radiocarbon years before present (i.e. 350 BC), and " yr BP" might be used to distinguish the uncalibrated date from a date derived from another dating method such as thermoluminescence.
Calibrated dates are frequently reported as "cal BP", "cal BC", or "cal AD", again with 'BP' referring to the year 1950 as the zero date.Taylor & Bar-Yosef (2014), p. 29. Radiocarbon gives two options for reporting calibrated dates. A common format is "cal ", where:
For example, "cal 1220–1281 AD (1σ)" means a calibrated date for which the true date lies between AD 1220 and AD 1281, with a confidence level of '1 sigma', or approximately 68%. Calibrated dates can also be expressed as "BP" instead of using "BC" and "AD". The curve used to calibrate the results should be the latest available IntCal curve. Calibrated dates should also identify any programs, such as OxCal, used to perform the calibration. In addition, an article in Radiocarbon in 2014 about radiocarbon date reporting conventions recommends that information should be provided about sample treatment, including the sample material, pretreatment methods, and quality control measurements; that the citation to the software used for calibration should specify the version number and any options or models used; and that the calibrated date should be given with the associated probabilities for each range.
Contamination is of particular concern when dating very old material obtained from archaeological excavations and great care is needed in the specimen selection and preparation. In 2014, Thomas Higham and co-workers suggested that many of the dates published for Neanderthal artifacts are too recent because of contamination by "young carbon".
As a tree grows, only the outermost tree ring exchanges carbon with its environment, so the age measured for a wood sample depends on where the sample is taken from. This means that radiocarbon dates on wood samples can be older than the date at which the tree was felled. In addition, if a piece of wood is used for multiple purposes, there may be a significant delay between the felling of the tree and the final use in the context in which it is found.Bowman (1995), pp. 53–54. This is often referred to as the "old wood" problem. One example is the Bronze Age trackway at Withy Bed Copse, in England; the trackway was built from wood that had clearly been worked for other purposes before being re-used in the trackway. Another example is driftwood, which may be used as construction material. It is not always possible to recognize re-use. Other materials can present the same problem: for example, bitumen is known to have been used by some Neolithic communities to waterproof baskets; the bitumen's radiocarbon age will be greater than is measurable by the laboratory, regardless of the actual age of the context, so testing the basket material will give a misleading age if care is not taken. A separate issue, related to re-use, is that of lengthy use, or delayed deposition. For example, a wooden object that remains in use for a lengthy period will have an apparent age greater than the actual age of the context in which it is deposited.
The development of radiocarbon dating has had a profound impact on archaeologyoften described as the "radiocarbon revolution".Taylor (1997), p. 70. In the words of anthropologist R. E. Taylor, " data made a world prehistory possible by contributing a time scale that transcends local, regional and continental boundaries". It provides more accurate dating within sites than previous methods, which usually derived either from stratigraphy or from typologies (e.g. of stone tools or pottery); it also allows comparison and synchronization of events across great distances. The advent of radiocarbon dating may even have led to better field methods in archaeology since better data recording leads to a firmer association of objects with the samples to be tested. These improved field methods were sometimes motivated by attempts to prove that a date was incorrect. Taylor also suggests that the availability of definite date information freed archaeologists from the need to focus so much of their energy on determining the dates of their finds, and led to an expansion of the questions archaeologists were willing to research. For example, from the 1970s questions about the evolution of human behaviour were much more frequently seen in archaeology.Taylor (1987), pp. 143–146.
The dating framework provided by radiocarbon led to a change in the prevailing view of how innovations spread through prehistoric Europe. Researchers had previously thought that many ideas spread by diffusion through the continent, or by invasions of peoples bringing new cultural ideas with them. As radiocarbon dates began to prove these ideas wrong in many instances, it became apparent that these innovations must sometimes have arisen locally. This has been described as a "second radiocarbon revolution". More broadly, the success of radiocarbon dating stimulated interest in analytical and statistical approaches to archaeological data. Taylor has also described the impact of AMS, and the ability to obtain accurate measurements from very small samples, as ushering in a third radiocarbon revolution.Renfrew (2014), p. 13.
Occasionally, radiocarbon dating techniques date an object of popular interest, for example, the Shroud of Turin, a piece of linen cloth thought by some to bear an image of Jesus Christ after his crucifixion. Three separate laboratories dated samples of linen from the Shroud in 1988; the results pointed to 14th-century origins, raising doubts about the shroud's authenticity as an alleged 1st-century relic.
Researchers have studied other isotopes created by cosmic rays to determine if they could also be used to assist in dating objects of archaeological interest; such isotopes include , , , , and . With the development of AMS in the 1980s it became possible to measure these isotopes precisely enough for them to be the basis of useful dating techniques, which have been primarily applied to dating rocks.Walker (2005), pp. 77–79. Naturally occurring radioactive isotopes can also form the basis of dating methods, as with potassium–argon dating, argon–argon dating, and uranium series dating.Walker (2005), pp. 57–77. Other dating techniques of interest to archaeologists include thermoluminescence, optically stimulated luminescence, electron spin resonance, and fission track dating, as well as techniques that depend on annual bands or layers, such as dendrochronology, tephrochronology, and varve chronology.Walker (2005), pp. 93–162.
Radiocarbon is also used to date carbon released from ecosystems, particularly to monitor the release of old carbon that was previously stored in soils as a result of human disturbance or climate change. Recent advances in field collection techniques also allow the radiocarbon dating of methane and carbon dioxide, which are important .
Physical and chemical details
where n represents a neutron and p represents a proton.Bianchi & Canuel (2011), p. 35.
Carbon dioxide produced in this way diffuses in the atmosphere, is dissolved in the ocean, and is taken up by plants via photosynthesis. Animals eat the plants, and ultimately the radiocarbon is distributed throughout the biosphere. The ratio of to is approximately 1.25 parts of to 1012 parts of .Tsipenyuk (1997), p. 343. In addition, about 1% of the carbon atoms are of the stable isotope .
By emitting a beta particle (an electron, e−) and an Antineutrino (), one of the neutrons in the nucleus changes to a proton and the nucleus reverts to the stable (non-radioactive) isotope .Taylor & Bar-Yosef (2014), p. 33.
Principles
where N0 is the number of atoms of the isotope in the original sample (at time t = 0, when the organism from which the sample was taken died), and N is the number of atoms left after time t. λ is a constant that depends on the particular isotope; for a given isotope it is equal to the reciprocal of the mean-life – i.e. the average or expected time a given atom will survive before undergoing radioactive decay. The mean-life, denoted by τ, of is 8,267 years, so the equation above can be rewritten as:Aitken (1990), p. 59.
The sample is assumed to have originally had the same / ratio as the ratio in the atmosphere, and since the size of the sample is known, the total number of atoms in the sample can be calculated, yielding N0, the number of atoms in the original sample. Measurement of N, the number of atoms currently in the sample, allows the calculation of t, the age of the sample, using the equation above.
Carbon exchange reservoir
Dating considerations
Atmospheric variation
Isotopic fractionation
For marine organisms, the details of the photosynthesis reactions are less well understood, and the values for marine photosynthetic organisms are dependent on temperature. At higher temperatures, has poor solubility in water, which means there is less available for the photosynthetic reactions. Under these conditions, fractionation is reduced, and at temperatures above 14 °C the values are correspondingly higher, while at lower temperatures, becomes more soluble and hence more available to marine organisms. The value for animals depends on their diet. An animal that eats food with high values will have a higher than one that eats food with lower values. The animal's own biochemical processes can also impact the results: for example, both bone minerals and bone collagen typically have a higher concentration of than is found in the animal's diet, though for different biochemical reasons. The enrichment of bone also implies that excreted material is depleted in relative to the diet.Schoeninger (2010), p. 446.
0‰
−22‰ to −17‰ −30‰ to −22‰ −15‰ to −9‰ −8‰ −32‰ to −13‰
Reservoir effects
Marine effect
Hemisphere effect
Other effects
Contamination
Samples
Material considerations
Preparation and size
Measurement and results
Beta counting
Accelerator mass spectrometry
Calculations
Errors and reliability
Calibration
Reporting dates
Use in archaeology
Interpretation
Notable applications
Pleistocene/Holocene boundary in Two Creeks Fossil Forest
Dead Sea Scrolls
Impact
Use outside archaeology
See also
Notes
Sources
External links
|
|